
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2100
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Comparative Analysis of Sequential and Parallel
Implementations of RSA

Sapna Saxena, Neha Kishore, Disha Handa, Bhanu Kapoor

Abstract—Public key infrastructure based cryptographic algorithms are usually based on modular arithmetic. As a result, they are
considered to be slower when compared to the symmetric cryptographic algorithms. In the RSA public key security algorithm, the
encryption and decryption is based on modular exponentiation and modular reduction using large integers. Due to the size of integers used
in the RSA, typically 1024 bits, the algorithm becomes compute-intensive. Thus the sequential implementation of RSA takes large
runtimes. In this paper, we are looking into the possibility of improving the performance of RSA by parallelizing it using OpenMP on the
GCC infrastructure. We have developed two versions of the parallel RSA for our experiments. We have also analyzed the performance
gained by comparing the sequential version with the parallel versions of RSA running on the GCC infrastructure.

Index Terms— Cryptography, GCC infrastructure, Public Key algorithm, Parallel implementation, Serial Implementation, RSA, OpenMP

—————————— ——————————

1 INTRODUCTION
HE concept of public key cryptography (PKC) was in-
vented and introduced by Whitfield Diffie and Martin
Hellman [1, 8], and independently by Ralph Merkle [7].

Their contribution to cryptography was that the keys could
come in pairs i.e. an encryption key and a decryption key and
the decryption key cannot (practically) be derived from the
encryption key.

Public key methods are important because they can be
used for transmitting encryption keys or other data securely
even when the parties have no opportunity to agree on a se-
cret key in private. The encryption key is also called the public
key and the decryption key the private key. The security pro-
vided by these ciphers is based on keeping the private key
secret.

Public key encryption and decryption is compute-intensive
because a lot of modular multiplications with very large num-
bers are needed to perform these tasks. Therefore public key
algorithm is known to be much slower than symmetric key
algorithms. Recently the use of OpenMP [12] on the GCC in-
frastructure for general purpose computing has been gaining
widespread usage for parallelizing algorithms. Many compu-
tational problems have gained a significant performance in-
crease by using the highly parallel properties of the Open MP.
GCC infrastructure is a framework which makes these kinds
of implementations available to the general programmers. The
OpenMP approach makes it simpler to implement parallel
programs.

2 RSA ALGORHTM
The RSA algorithm [3, 6, 9] was introduced in 1977 and is

one of the most important algorithms used for encryption and
authentication on Internet. It was the first algorithm suitable
for both digital signature and data encryption applications. It
is widely used in the protocols supporting the e-commerce
today.

Mathematically, it is based on factorization of large inte-
gers, which is computationally very difficult to carry out. It
provides strong security with sufficiently long keys. For ex-
ample, if the key length of 1024 bits is used then it is nearly
impractical to break up the security of RSA encryption even
when working with high performance computers.

The RSA algorithm is divided into three parts – Key Gen-
eration, Encryption, and Decryption.

2.1 Key Generation
The key generation part of RSA algorithm is muli-step process
which is given below –

1. Choose two very large random prime integers having
bit size 512: p and q

2. Compute m = p*q, which is used a modulus
3. Compute φ(n) = (p-1) (q-1)
4. Choose an integer e, 1 < e < φ(n) such that:

GCD(e, φ(n)) = 1(GCD is greatest common denomina-
tor)

5. Compute d, 1 < d < φ(n) such that:
ed ≡ 1 (mod φ(n))

Since in the above procedure e is the public or encryption ex-
ponent and d is the private or decryption exponent, thus Pub-
lish e and n as the public key and keep d and n as the secret
key.

2.2 RSA Encryption
In order to encrypt, the plain text data is raised to the pow-

er of encryption key and then divided by the product of the
prime numbers to calculate the remainder. The remainder is
sent as cipher text.

T

————————————————
• Sapna Saxena is currently pursuing PhD inComputer Science and Engi-

neering inChitkara University,India, PH- 9315870921. E-
mail:sapna.saxena@chitkarauniversity.edu.in

• Neha Kishore is currently pursuing PhD inComputer Science and Engi-
neering inChitkara University,India, PH- 9592405665. E-
mail:neha.kishore@chitkarauniversity.edu.in

• Disha Handa is currently pursuing PhD inComputer Science and Engi-
neering inChitkara University,India, PH- 9417994228. E-
mail:disha.handa@chitkarauniversity.edu.in

• Bhanu Kapoor Professor,Computer Science and Engineering inChitkara
University,India, E-mail:bhanu.kapoor@chitkarauniversity.edu.in

• Co-Author name is currently pursuing masters degree program in electric

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2101
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 C = M^e % m

2.3 RSA Decryption
In order to encrypt, the cipher text data is raised to the

power of decryption key and then divided by the product of
the prime numbers to calculate the remainder. The remainder
is the original plain text.

 M = Ce % m

3 PARALLELIZATION OF RSA ALGORITHM
The main focus of this paper is to design new parallel algo-

rithms that provide efficient parallel implementations of RSA
to be executed on multi-core machine and compare the per-
formance gained by the parallel implementation.

The RSA algorithm is based on modular arithmetic. While
executing the algorithm, most of the time is consumed during
the encryption / decryption part and the majority of this time
is consumed in modular exponentiation and modular reduc-
tion. We have implemented various parallel algorithms for
exponentiation and reduction.

The methods that are implemented, analyzed and com-
pared in this paper are the memory efficient methods of mod-
ular exponentiation and modular reduction. In order to paral-
lelize the RSA and to execute it on multi-core machines, we
have implemented it in two forms analyzed the performance
gained in terms of time.

The two methods which have been implemented are –
1. The repeated-square and multiply method, and
2. The right-to-left binary method.

3.1 First Form: Repeated-square and multiply method
The first form of parallel implementation is based on the

repeated square-and-multiply method [2, 10]. The repeated
square-and-multiply modular exponentiation [5, 11] algorithm
is based on the simple observation that for an even e,

ge mod m = (ge/2 * ge/2) mod m.

The recursive definition for this method is given below –

This method improves the performance to a great extent

for larger e. The principle used to implement this form is data
decomposition. We have parallelized the modular exponentia-
tion part of RSA in the following manner –

If the exponent e is even then it can be divided into two or
four parts as per the availability of the cores in the system.
Then each part of the exponentiation computation can be as-
signed to multiple threads and finally the results of each
thread can multiplied to get the final result.

If the e exponent is odd, then the following can be done –
• The value of g can be stored in one variable say A.
• We then subtract 1 from the e to make it even.
• e will be divided into 2/4 parts depending upon the

number of cores present in the target machine.
• Each exponentiation computation will be allocated to a

separate thread and processor.
• The result obtained from each thread will be multiplied

to get the combined result.
• Finally the result will be multiplied to A to get the final

result.
The algorithm used for the method is given in Figure 1.

Result=1
N=Power/Number_of_Thread
IF Power mod Number_of_Thread == 0
 FOR I = 1 to Power
 FOR J = 1 to N
 Result = Result * Base;
 END FOR
 END FOR
ELSE
 N = N - 1
 FOR I = 1 to Power
 FOR J = 1 to N
 Result = Result * Base;
 END FOR
 END FOR
 Result = Result * Base;
END IF
Cipher = Result mod Modulus

Fig 1: Algorithm for repeated-square and multiply

3.2 Second Form: Right-to-Left Binary method
The second form of parallel implementation is based on

right-to-left binary method which is based on the principle of
exponentiation by squaring or binary exponentiation. The
method is called right-to-left binary method because the bina-
ry representation of the exponent is computed from right to
left. Firstly the exponent is converted into its binary represen-
tation and the right most bit is considered first. Thereafter the
algorithm given in Figure 2 is used to calculate the value of
expression Base exponent mod modulus.

Function power_binary(base, BinaryNumber, length,

modulus)
Result =1
 FOR i = length to 0
 IF binaryNumber[i] % 2 == 1
 Result=(result * base)%modulus;
 END IF
 base = (base * base) % modulus;
 END FOR
return Result

Fig 2: Algorithm for right-to-left binary method
The loop used in the algorithm executed for the number of

times equal to the number of bits present in the binary nota-
tion of the exponent. The calculation performed on the follow-
ing principle –

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2102
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

For example base = 4, exponent = 13, and modulus = 497.
The binary equivalent of exponent is 1101. Because exponent
is four binary digits in length, the loop executes only four
times. This is shown in Table 1 below.

TABLE 1

EXAMPLE OF CALCULATIONS
nth
Itera-
tion

Bit Value of Result Value of Base

1 1 (1*4) % 497 = 4 (4*4) % 497
= 16

2 0 No calculation,
Value will remain
same

(16*16) % 497 =
256

3 1 (4*256) % 497
= 30

(256*256) % 497 =
429

4 1 (30*429) % 497
= 445

(429*429) % 497 =
151

The loop then terminates since exponent is zero, and the

result 445 is returned.

4 METHODOLOGY USED FOR EXPERIMENTS
The experiments are performed on dual core computers us-

ing OpenMP [12] on the GCC infrastructure on Linux envi-
ronment. The OpenMP API is a portable and parallel pro-
gramming model for shared memory multiprocessor architec-
tures. It is an open-source programming interface that sup-
ports parallel programming using the concepts of multi-
threaded programming. The OpenMP API supports C/C++
and Fortran on a wide variety of architectures. It is embedded
within the programs using compiler directives. The programs
are scalable and can be easily executed on any multi-core ma-
chine either quad-core or dual quad-core and so on.

For the experiments three different forms of RSA imple-
mentation are developed, first is the sequential one and other
two are the parallel forms which are based on two popular
memory efficient methods used for modular exponentiation
and modular reduction which are repeated-square-and-
multiply method and right-to-left binary method respectively.
And the significant improvements are recorded after perform-
ing the experiments.

The sequential form is developed using C Language and
executed on GCC infrastructure on Linux platform. To devel-
op the parallel versions OpenMP API is used in the combina-
tion with C language on the GCC infrastructure. It requires big
integer based computations [4] to implement the algorithm.
The performance gained is measured and analyzed in terms of
time during the experimentation. The time taken during the
execution of various forms is measured using time utility of
Linux. All forms are executed for exactly 25 times using the
same set of message and average of the time is taken as the
final value for that form.

All forms of the RSA implementation, sequential as well as

the parallel, which are used in the experiments, are divided
into three parts-Key Generation, Encryption, and Decryption.

To start with the process of key generation, same set of
prime numbers is taken in all three forms to generate the same
set of private and public keys. Also the same message is used
for encryption / decryption to detect the correct differences in
terms of performance gained for all the forms.

5 COMPARATIVE RESULTS
The experiments performed in order to improvise the per-

formance of RSA on multi-core machines shows the promising
results and it is find obvious after getting the initial results
that RSA encryption / decryption can be implemented fast on
multi-core machines if implemented parallely.

OpenMP in combination with GCC infrastructure allows
the parallel implementation that decreases the execution time
of RSA and improves its performance. However, it is obvious
that the performance will be increased significantly in the
presence of more number of processors.

We have obtained to find some improvements, as listed in
the table below. The Table 2 shows the execution time and
performance comparison in parallel runtimes using 2 cores
versus that of a sequential implementation using a single core.
In order to improvise the performance of RSA encryption we
have implemented it into two ways.

First form is based on the repeated-square-and-multiply
method version which itself shows the significant improve-
ment over the sequential implementation. It represents a
22.42% improvement in the execution runtime of the sequen-
tial one.

Whereas the second form of the parallel implementation is
based on right-to-left binary method represents a 26.54% im-
provement in the execution runtime.

TABLE 2

COMPARISON BETWEEN THE SEQUENTIAL AND PARALLEL IMPLEMEN-
TATION OF RSA

S.
No

Type of Im-
plementation

Implementation
Based on

Time
w.r.t. se-
quential
/ parallel

execu-
tion

1. Sequential Im-
plementation

Serial implemen-
tation

4.640s

2. First Form of
Parallel Im-
plementation

Repeated square
and multiply
method

3.700s

3. Second Form
of Parallel Im-
plementation

Right-to-Left Bi-
nary Method

3.409s

The Fig 3 shows the graphical representation of the per-
formance comparison between the sequential and parallel im-
plementation of RSA.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 2103
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig 3: Comparison between the sequential and parallel im-

plementation of RSA encryption

6 CONCLUSION AND FUTURESCOPE
The experimental results show that the RSA can be impro-

vised by implementing parallel using in combination with
GCC infrastructure. The parallel versions of RSA are more
efficient than that of the sequential version of it.

The programs used in the experiments are executed in dual
core environment. They could be performed with larger num-
ber of cores and improving upon synchronization issues
which will further improve the runtime. The experiments are
purely based on the modular exponentiation part of the RSA.
The further experiments of the research will be focused on the
factorization part of the RSA key generation algorithm.

Moreover, these experiments are performed and tested in a
single experimental environment. They could be performed in
different environments and results can be compared in follow-
ing research.

REFERENCES
[1] Menezes, A. J., Vanstone, S. A., & Oorschot, P. C. V. 1996. Handbook of

Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA.
[2] Diego Viot, Rodolfo Aurelio, Helano Castro and Jardel Silveria, Modular

Multiplication Algorithm for PKC, Universiadade Federal do Ceard, LESC
[3] Josef Pieprzyk1 and David Pointcheval, Parallel Authentication and Public

key encryption, Springer-Verlag 2003
[4] Chandra, S. S. & Chandra, K. 2005. Cbigint class: an implementation of big

integers in c++. J. Comput. Small Coll., 20(4), 77–83.
[5] Bewick, G. 1994. Fast multiplication algorithms and implementation.
[6] Rivest, R. L., Shamir, A., & Adleman, L. 1978. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 26(1), 96–99.
[7] Fu, C. & Zhu, Z.-L. Oct. 2008. An efficient implementation of rsa digital signa-

ture algorithm. In Wireless Communications, Networking and Mobile Com-
puting, 2008. WiCOM ’08. 4th International Conference on, 1–4.

[8] Diffie, W. & Hellman, M. Nov 1976. New directions in cryptography. Infor-
mation Theory, IEEE Transactions on, 22(6), 644–654.

[9] Barrett, P. 1986. Implementating the rivest, shamir and aldham public-key
encryption algorithm on standard digital signal processor. Proceedings of
CRYPTO’86, Lecture Notes in Computer Science, 311–323.

[10] Cohen, H., Frey, G. (editors): Handbook of elliptic and hyperelliptic curve
cryptography. Discrete Math.Appl., Chapman & Hall/CRC (2006)

[11] Igor L. Markov, Mehdi Saeedi, "Constant-Optimized Quantum Circuits for
Modular Multiplication and Exponentiation", Quantum Information and
Computation, Vol. 12, No. 5&6, pp. 0361-0394, 2012

[12] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald, Parallel
Programming in OpenMP. Morgan Kaufmann, 2000.

 IJSER

http://www.ijser.org/

	1 Introduction
	2 Rsa algorhtm
	2.1 Key Generation
	2.2 RSA Encryption
	2.3 RSA Decryption

	3 Parallelization of rsa algorithm
	3.1 First Form: Repeated-square and multiply method
	3.2 Second Form: Right-to-Left Binary method

	4 Methodology used for experiments
	5 Comparative Results
	6 Conclusion and futurescope
	References

