
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    2100 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

Comparative Analysis of Sequential and Parallel 
Implementations of RSA 

Sapna Saxena, Neha Kishore, Disha Handa, Bhanu Kapoor 
 

Abstract—Public key infrastructure based cryptographic algorithms are usually based on modular arithmetic. As a result, they are 
considered to be slower when compared to the symmetric cryptographic algorithms. In the RSA public key security algorithm, the 
encryption and decryption is based on modular exponentiation and modular reduction using large integers. Due to the size of integers used 
in the RSA, typically 1024 bits, the algorithm becomes compute-intensive. Thus the sequential implementation of RSA takes large 
runtimes. In this paper, we are looking into the possibility of improving the performance of RSA by parallelizing it using OpenMP on the 
GCC infrastructure. We have developed two versions of the parallel RSA for our experiments.  We have also analyzed the performance 
gained by comparing the sequential version with the parallel versions of RSA running on the GCC infrastructure.  

Index Terms— Cryptography, GCC infrastructure, Public Key algorithm, Parallel implementation, Serial Implementation, RSA, OpenMP  

——————————      —————————— 

1 INTRODUCTION                                                                     
HE concept of public key cryptography (PKC) was in-
vented and introduced by Whitfield Diffie and Martin 
Hellman [1, 8], and independently by Ralph Merkle [7]. 

Their contribution to cryptography was that the keys could 
come in pairs i.e. an encryption key and a decryption key and 
the decryption key cannot (practically) be derived from the 
encryption key.  

Public key methods are important because they can be 
used for transmitting encryption keys or other data securely 
even when the parties have no opportunity to agree on a se-
cret key in private. The encryption key is also called the public 
key and the decryption key the private key. The security pro-
vided by these ciphers is based on keeping the private key 
secret. 

Public key encryption and decryption is compute-intensive 
because a lot of modular multiplications with very large num-
bers are needed to perform these tasks. Therefore public key 
algorithm is known to be much slower than symmetric key 
algorithms. Recently the use of OpenMP [12] on the GCC in-
frastructure for general purpose computing has been gaining 
widespread usage for parallelizing algorithms. Many compu-
tational problems have gained a significant performance in-
crease by using the highly parallel properties of the Open MP. 
GCC infrastructure is a framework which makes these kinds 
of implementations available to the general programmers. The 
OpenMP approach makes it simpler to implement parallel 
programs.  

 
 

2 RSA ALGORHTM 
The RSA algorithm [3, 6, 9] was introduced in 1977 and is 

one of the most important algorithms used for encryption and 
authentication on Internet. It was the first algorithm suitable 
for both digital signature and data encryption applications. It 
is widely used in the protocols supporting the e-commerce 
today.  

Mathematically, it is based on factorization of large inte-
gers, which is computationally very difficult to carry out. It 
provides strong security with sufficiently long keys. For ex-
ample, if the key length of 1024 bits is used then it is nearly 
impractical to break up the security of RSA encryption even 
when working with high performance computers. 

The RSA algorithm is divided into three parts – Key Gen-
eration, Encryption, and Decryption.  

2.1 Key Generation 
The key generation part of RSA algorithm is muli-step process 
which is given below – 

1. Choose two very large random prime integers having 
bit size 512: p and q 

2. Compute m = p*q, which is used a modulus  
3. Compute φ(n) = (p-1) (q-1) 
4. Choose an integer e, 1 < e < φ(n) such that: 

GCD(e, φ(n)) = 1(GCD is greatest common denomina-
tor) 

5. Compute d, 1 < d < φ(n) such that: 
ed ≡ 1 (mod φ(n)) 

Since in the above procedure e is the public or encryption ex-
ponent and d is the private or decryption exponent, thus Pub-
lish e and n as the public key and keep d and n as the secret 
key.  

2.2 RSA Encryption 
In order to encrypt, the plain text data is raised to the pow-

er of encryption key and then divided by the product of the 
prime numbers to calculate the remainder. The remainder is 
sent as cipher text.  
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    C = M^e % m  

2.3 RSA Decryption 
In order to encrypt, the cipher text data is raised to the 

power of decryption key and then divided by the product of 
the prime numbers to calculate the remainder. The remainder 
is the original plain text.  

    M = Ce % m  

3 PARALLELIZATION OF RSA ALGORITHM 
The main focus of this paper is to design new parallel algo-

rithms that provide efficient parallel implementations of RSA 
to be executed on multi-core machine and compare the per-
formance gained by the parallel implementation.  

The RSA algorithm is based on modular arithmetic. While 
executing the algorithm, most of the time is consumed during 
the encryption / decryption part and the majority of this time 
is consumed in modular exponentiation and modular reduc-
tion. We have implemented various parallel algorithms for 
exponentiation and reduction.      

The methods that are implemented, analyzed and com-
pared in this paper are the memory efficient methods of mod-
ular exponentiation and modular reduction. In order to paral-
lelize the RSA and to execute it on multi-core machines, we 
have implemented it in two forms analyzed the performance 
gained in terms of time.  

The two methods which have been implemented are – 
1. The repeated-square and multiply method, and 
2. The right-to-left binary method. 

3.1 First Form: Repeated-square and multiply method   
The first form of parallel implementation is based on the 

repeated square-and-multiply method [2, 10]. The repeated 
square-and-multiply modular exponentiation [5, 11] algorithm 
is based on the simple observation that for an even e,  

ge mod m = (ge/2 * ge/2) mod m.  
 
The recursive definition for this method is given below – 

 
 
 

 
 
 
 
This method improves the performance to a great extent 

for larger e. The principle used to implement this form is data 
decomposition. We have parallelized the modular exponentia-
tion part of RSA in the following manner – 

If the exponent e is even then it can be divided into two or 
four parts as per the availability of the cores in the system. 
Then each part of the exponentiation computation can be as-
signed to multiple threads and finally the results of each 
thread can multiplied to get the final result. 

If the e exponent is odd, then the following can be done – 
• The value of g can be stored in one variable say A. 
• We then subtract 1 from the e to make it even. 
• e will be divided into 2/4 parts depending upon the 

number of cores present in the target machine. 
• Each exponentiation computation will be allocated to a 

separate thread and processor. 
• The result obtained from each thread will be multiplied 

to get the combined result. 
• Finally the result will be multiplied to A to get the final 

result. 
The algorithm used for the method is given in Figure 1.  
 

Result=1 
N=Power/Number_of_Thread 
IF Power mod Number_of_Thread == 0 
      FOR I = 1 to Power 
          FOR J = 1 to N 
              Result = Result * Base; 
          END FOR 
       END FOR  
ELSE 
      N = N - 1 
      FOR I = 1 to Power 
          FOR J = 1 to N 
              Result = Result * Base; 
          END FOR 
      END FOR  
      Result = Result * Base; 
END IF 
Cipher = Result mod Modulus 

Fig 1:  Algorithm for repeated-square and multiply  

3.2 Second Form: Right-to-Left Binary method 
The second form of parallel implementation is based on 

right-to-left binary method which is based on the principle of 
exponentiation by squaring or binary exponentiation. The 
method is called right-to-left binary method because the bina-
ry representation of the exponent is computed from right to 
left. Firstly the exponent is converted into its binary represen-
tation and the right most bit is considered first. Thereafter the 
algorithm given in Figure 2 is used to calculate the value of 
expression Base exponent mod modulus.  

 
Function power_binary(base, BinaryNumber, length, 

modulus)   
Result =1 
    FOR i = length to 0    
      IF binaryNumber[i] % 2 == 1 
            Result=(result * base)%modulus; 
       END IF 
       base = (base * base) % modulus; 
    END FOR   
return Result 

Fig 2: Algorithm for right-to-left binary method   
The loop used in the algorithm executed for the number of 

times equal to the number of bits present in the binary nota-
tion of the exponent. The calculation performed on the follow-
ing principle – 
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For example base = 4, exponent = 13, and modulus = 497. 
The binary equivalent of exponent is 1101. Because exponent 
is four binary digits in length, the loop executes only four 
times. This is shown in Table 1 below. 

 
TABLE 1  

EXAMPLE OF CALCULATIONS  
nth 
Itera-
tion 

Bit Value of Result Value of Base 

1 1 (1*4) % 497 = 4 (4*4) % 497  
= 16 

2 0 No calculation,  
Value will remain 
same 

(16*16) % 497 = 
256 

3 1 (4*256) % 497  
= 30 

(256*256) % 497 = 
429 

4 1 (30*429) % 497  
= 445 

(429*429) % 497 = 
151 

 
The loop then terminates since exponent is zero, and the 

result 445 is returned. 

4 METHODOLOGY USED FOR EXPERIMENTS 
The experiments are performed on dual core computers us-

ing OpenMP [12] on the GCC infrastructure on Linux envi-
ronment. The OpenMP API is a portable and parallel pro-
gramming model for shared memory multiprocessor architec-
tures. It is an open-source programming interface that sup-
ports parallel programming using the concepts of multi-
threaded programming. The OpenMP API supports C/C++ 
and Fortran on a wide variety of architectures. It is embedded 
within the programs using compiler directives. The programs 
are scalable and can be easily executed on any multi-core ma-
chine either quad-core or dual quad-core and so on. 

For the experiments three different forms of RSA imple-
mentation are developed, first is the sequential one and other 
two are the parallel forms which are based on two popular 
memory efficient methods used for modular exponentiation 
and modular reduction which are repeated-square-and-
multiply method and right-to-left binary  method respectively. 
And the significant improvements are recorded after perform-
ing the experiments.  

The sequential form is developed using C Language and 
executed on GCC infrastructure on Linux platform. To devel-
op the parallel versions OpenMP API is used in the combina-
tion with C language on the GCC infrastructure. It requires big 
integer based computations [4] to implement the algorithm. 
The performance gained is measured and analyzed in terms of 
time during the experimentation. The time taken during the 
execution of various forms is measured using time utility of 
Linux. All forms are executed for exactly 25 times using the 
same set of message and average of the time is taken as the 
final value for that form.  

All forms of the RSA implementation, sequential as well as 

the parallel, which are used in the experiments, are divided 
into three parts-Key Generation, Encryption, and Decryption.  

To start with the process of key generation, same set of 
prime numbers is taken in all three forms to generate the same 
set of private and public keys. Also the same message is used 
for encryption / decryption to detect the correct differences in 
terms of performance gained for all the forms.    

5 COMPARATIVE RESULTS 
The experiments performed in order to improvise the per-

formance of RSA on multi-core machines shows the promising 
results and it is find obvious after getting the initial results 
that RSA encryption / decryption can be implemented fast on 
multi-core machines if implemented parallely.  

OpenMP in combination with GCC infrastructure allows 
the parallel implementation that decreases the execution time 
of RSA and improves its performance. However, it is obvious 
that the performance will be increased significantly in the 
presence of more number of processors. 

We have obtained to find some improvements, as listed in 
the table below. The Table 2 shows the execution time and 
performance comparison in parallel runtimes using 2 cores 
versus that of a sequential implementation using a single core. 
In order to improvise the performance of RSA encryption we 
have implemented it into two ways.  

First form is based on the repeated-square-and-multiply 
method version which itself shows the significant improve-
ment over the sequential implementation. It represents a 
22.42% improvement in the execution runtime of the sequen-
tial one.   

Whereas the second form of the parallel implementation is 
based on right-to-left binary method represents a 26.54% im-
provement in the execution runtime.  

 
TABLE 2  

COMPARISON BETWEEN THE SEQUENTIAL AND PARALLEL IMPLEMEN-
TATION OF RSA 

S. 
No 

Type of Im-
plementation 

Implementation 
Based on 

Time 
w.r.t. se-
quential 
/ parallel 

execu-
tion 

1.  Sequential Im-
plementation 

Serial implemen-
tation 

4.640s 

2.  First Form of 
Parallel Im-
plementation 

Repeated square 
and multiply 
method 

3.700s 

3.  Second Form 
of Parallel Im-
plementation 

Right-to-Left Bi-
nary Method 

3.409s 

The Fig 3 shows the graphical representation of the per-
formance comparison between the sequential and parallel im-
plementation of RSA. 
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Fig 3: Comparison between the sequential and parallel im-

plementation of RSA encryption 

6 CONCLUSION AND FUTURESCOPE 
The experimental results show that the RSA can be impro-

vised by implementing parallel using in combination with 
GCC infrastructure. The parallel versions of RSA are more 
efficient than that of the sequential version of it.    

The programs used in the experiments are executed in dual 
core environment. They could be performed with larger num-
ber of cores and improving upon synchronization issues 
which will further improve the runtime. The experiments are 
purely based on the modular exponentiation part of the RSA. 
The further experiments of the research will be focused on the 
factorization part of the RSA key generation algorithm.    

Moreover, these experiments are performed and tested in a 
single experimental environment. They could be performed in 
different environments and results can be compared in follow-
ing research.  
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